Hardware-in-the-Loop
a system's simulation test of embedded controls by the electrical emulation of it's motors, sensors and actuators.
See Also: HIL
-
product
PXIe-1486, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO FPD-Link™ Interface Module
787454-01
The PXIe-1486 combines the Texas Instruments Flat Panel Display Link™ (FPD-Link™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1486 makes use of a combination of FPD-Link™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable FPD-Link™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the FPD-Link™ channels. The PXIe-1486 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). FPD-Link is a trademark of Texas Instruments.
-
product
PXI Multifunction Reconfigurable I/O Module
PXI Multifunction Reconfigurable I/O Modules feature a dedicated analog-to-digital converter (ADC) per channel for independent timing and triggering. This design offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. You can customize these models with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop (HIL) testing, custom protocol communication, sensor simulation, and high-speed control. PXI Express models also include peer-to-peer streaming for direct data transfer to other PXI Express models.
-
product
PXI FlexRay Interface Module
PXI FlexRay Interface Modules provide two fully functional FlexRay interfaces, allowing an individual electronic control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. PXI FlexRay Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
Test Automation System
RT-Tester
Verified Systems International GMBH
Designed to perform automated hardware-in-the-loop tests and software component test on process or thread level for embedded real-time systems. The functional components of RT-Tester can be structured as shown in the figure to the left. Please click on the small image to enlarge the picture. The System Under Test (SUT) denotes the object to be tested.
-
product
FlexRay Interface Device
FlexRay Interface Devices provide two fully functional FlexRay interfaces, allowing an individual engine control unit (ECU) to be connected to the interface when other cold-start nodes are not available. You also can use the interfaces individually to connect two separate FlexRay networks while maintaining full performance on each interface. FlexRay Interface Devices work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
PXI Fault Insertion (Fault Injection) Modules
PXI Fault Insertion Units (FIU), also known as Fault Injection switch products, are designed specifically for safety-critical applications where the response of a control system is required to be evaluated when sensor connections behave in unexpected ways. These modules are scalable solutions that can be used to switch signals between simulations and real-life devices in a multitude of hardware-in-the-loop (HIL) simulation and test systems. The fault insertion unit can significantly simplify and accelerate the testing, diagnosis and integration work in HIL applications.
-
product
PXI Vehicle Multiprotocol Interface Module
PXI Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. PXI Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
3-Axis Motion Simulators
When a device under test needs to be stimulated with simultaneous movements around three axes, then a product from the ACUTRONIC three-axis motion simulator range is the right choice. Independent motion simulation in three axes makes them very versatile: they are used as Inertial Guidance Test Systems (IGTS), for HardWare-In-the-Loop (HWIL) testing, for the test of optronic pointing devices, and many more applications.
-
product
PCIe-7846, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device
786456-01
PCIe, Kintex-7 160T FPGA, 500 kS/s Multifunction Reconfigurable I/O Device - The PCIe-7846 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals to ensure complete flexibility of system timing and synchronization. You can customize these devices with the LabVIEW FPGA Module to develop applications requiring precise timing and control such as hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. The PCIe-7846 features a dedicated analog-to-digital converter per channel for independent timing and triggering. This device offers specialized functionality such as multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware.
-
product
Vehicle Multiprotocol Interface Device
The Vehicle Multiprotocol Interface Device excels in applications requiring real-time, high-speed manipulation of hundreds of CAN frames and signals, such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, automation control, and more. The NI-XNET device-driven DMA engine enables the onboard processor to move CAN frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time for processing complex models and applications.
-
product
VeriStand
VeriStand helps you get your hardware-in-the-loop or test cell control and monitoring system up and running quickly. With a wide range of out-of-the-box functionality that includes configurable data acquisition and logging, test sequencing, and simulation model integration, VeriStand reduces the time needed to test your products. You can also use a variety of software tools to add custom functionality to VeriStand, which makes it flexible enough to adapt to even the most complex applications. Choosing VeriStand gives you the confidence that your test system will perform reliably while providing the flexibility you need to meet your real-time test requirements.
-
product
Test System
BMS HIL
The BMS Hardware-in-the-Loop (HIL) Test System is a high performance platform providing all necessary input signals used for battery pack simulation. A real-time operating system executes complex cell and pack models commonly used for BMS algorithm development and firmware regression testing.
-
product
Vehicle Multiprotocol Interface Module
C Series
C Series Vehicle Multiprotocol Interface Modules use hardware-selectable NI-XNET Transceiver Cables (TRC) to communicate High-Speed/Flexible Data‑Rate CAN, Low-Speed/Fault Tolerant CAN, and/or LIN. Using the NI-XNET driver, you can create applications that require real-time, high-speed manipulation of hundreds of CAN and/or LIN frames and signals. The NI-XNET device-driven DMA engine enables the onboard processor to move frames and signals between the interface and the user program without CPU interrupts, minimizing message latency and freeing host processor time. C Series Vehicle Multiprotocol Interface Modules work well in applications such as hardware-in-the-loop (HIL) simulation, rapid control prototyping, bus monitoring, and automation control.
-
product
Test Hardware
TTPSimulate PCI
TTPSimulate supports hardware-in-the-loop simulation and design of complex distributed control systems where some parts of the systems are physically available and others exist only as a simulation model. This board enables concurrent engineering and reliable integration of complex integrated systems in large programs.
-
product
Satellite Network Simulator
The DataSoft Satellite Network Simulator is a real-time software tool capable of simulating satellite links by operating as a hardware-in-the-loop tool for layer-2 verification and validation, or, as an offline planning tool for capacity and availability analysis for planned deployments.
-
product
Power Electronics Test Bench
OP1300
The multi-purpose and ready-to-use Power Electronics Test Bench combines a state-of-the-art Hardware-in-the-Loop (HIL) simulator from OPAL-RT with Imperix’s Rapid Control Prototyping (RCP) system and real power hardware. It enables rapid development of power electronics, drives and smart-grid applications across industry and academia.
-
product
PCI-7813, 3M Gate Virtex-II FPGA, Digital Reconfigurable I/O Device
779370-01
The PCI‑7813 is a reconfigurable I/O (RIO) device that features a user-programmable FPGA for onboard processing and flexible I/O operation. With LabVIEW FPGA, you can individually configure the digital lines as inputs, outputs, counter/timers, PWM, encoder inputs, or specialized communication protocols. You can also program custom onboard decision making that executes with hardware-timed speed and reliability. The PCI‑7813 is well-suited for a wide variety of applications, such as high-speed waveform generation, sensor simulation, hardware-in‑the‑loop (HIL) test, custom communications protocols, bit error rate test, and other applications that require precise timing and control.
-
product
Panel-mounted Power Amplifier(Hardware In The Loop Testing)
PA60Bi
PA60Bi is the panel-mounted power amplifier, which can produce 3-phase current, with maximum RMS phase current of 60A and maximum output power of 800VA, and 4-phase voltage, with maximum RMS phase voltage of 120V and maximum output power of 60VA.
-
product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787457-01
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
product
PXIe-7862, Kintex-7 325T FPGA, 16-Channel AI, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
786672-01
PXIe, Kintex-7 325T FPGA, 16-Channel AI, 1 MS/s, PXI Multifunction Reconfigurable I/O Module - The PXIe-7862 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of timing and synchronization. With 16 analog input channels connected directly to a Kintex-7 325T FPGA, you have ample space to design applications that require precise timing such as hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXIe-7862 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. The PXIe-7862 also includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
product
Vehicle Communication Buses
Vehicle Communication Buses provide native support for Controller Area Network (CAN), Local Interconnect Network (LIN), and FlexRay frames and signals. Use these products for hardware-in-the-loop simulation, bus monitoring, automation control, and more.
-
product
Battery Cell Simulator
BCS-LABCAR
The ETAS Battery Cell Simulator (BCS-LABCAR) is a Hardware-in-the-Loop system which specifically targets the signal-level test, validation, and calibration of battery management systems (BMSs). The BCS-LABCAR is a high-precision Battery Cell Simulator that emulates the behavior of individual battery cells and packs across a wide range of challenging operating conditions, e.g. cell balancing over-charging, deep discharging, or pulse operation. The system is highly modular and thus scalable to emulate battery packs from a single cell all the way up to 200 cells.
-
product
Test for Model-in-the-Loop and Software-in-the-Loop
RT2
ETAS RT2 is a powerful test tool for testing of functional models (MiL) and software (SiL). It contains the following parts of the testing lifecycle: modeling, execution, assessment, and reporting. ETAS RT2 is specialized for testing of embedded systems with inputs and outputs of continuous or discrete signals. A model based test design approach enables intuitive realization of complex test strategies. Thanks to its capabilities ETAS RT2 enables comprehensive testing activities in the early phases of the development.
-
product
Functional Test
xUTS
Extend test to encompass copious test points and DUT varieties along with real-time, hardware-in-the-loop and other state-of-the-art instrumentation. extendedUTS (xUTS) is a custom product for high complexity functional test. Configured for the unique needs of a class of devices under test (DUTs), the xUTS employs our universal test system approach that combines the best open platform instrumentation and software along with mass interconnect technology.
-
product
HIL and RCP DFIG Laboratory
This laboratory combines the best of both OPAL-RT and Festo solutions to deliver academic researchers and teachers with the ideal Hardware-in-the-Loop (HIL) and Rapid Control Prototyping (RCP) simulation system to conduct experiments and teach in the fields of electrical machinery, power converters and wind energy generation.
-
product
Powertrain
The MOTOMEA Electric Powertrain Dynamometer is part of a fully integrated modular system with hardware-in-the-loop testing. System capabilities include drive cycle and virtual test driving. Powertrain testing capabilities also include battery testing and simulation using bidirectional DC power supply.
-
product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787456-01
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a … high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
product
PXIe-1487, 8 Input, 8 Output, or 4 Input/4 Output PXI FlexRIO GMSL™ Interface Module
787458-01
The PXIe-1487 combines the Maxim Integrated Gigabit Multimedia Serial Link™ (GMSL™) interface with the Xilinx FPGA for high-throughput vision and imaging applications. This module provides a high-speed digital interface for using and testing modern advanced driver assistance systems (ADAS) and autonomous drive (AD) camera sensors and electronic control units (ECUs). Additionally, the PXIe-1487 makes use of a combination of GMSL™ serializers and deserializers with a Xilinx FPGA to provide a high-throughput and customizable GMSL™ interface on PXI. The included FlexRIO driver, with LabVIEW FPGA examples, provides access and control for power-over-coax, I²C back-channel communication, and general-purpose input/output (GPIO) communication on the GMSL™ channels. The PXIe-1487 is ideal for applications such as in-vehicle data logging, lab-based playback, or hardware-in-the-loop (HIL). GMSL is a trademark of Maxim Integrated Products, Inc.
-
product
PXIe-7865, Kintex-7 160T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
787355-01
PXIe, Kintex-7 160T FPGA, 24-Channel AO, 1 MS/s, PXI Multifunction Reconfigurable I/O Module - The PXIe-7865 features flexibility of timing and synchronization with a user-programmable FPGA for onboard processing and direct control over I/O signals. The PXIe-7865 provides 24 analog output, 2 analog input, and 32, 5V input-tolerant digital I/O channels connected to a Kintex-7 160T FPGA to help you design applications for hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. You can use the dedicated A/D converter (ADC) for independent timing, individual channel triggering, and multirate sampling. Additionally, the PXIe-7865 includes peer-to-peer streaming for direct data transfer to other PXI Express modules.
-
product
PXIe-7868, Kintex-7 325T FPGA, 18-AO Channels, 1 MS/s, PXI Multifunction Reconfigurable I/O Module
785571-01
Kintex-7 325T FPGA, 18-AO Channels, 1 MS/s, PXI Multifunction Reconfigurable I/O Module—The PXIe-7868 features a user-programmable FPGA for high-performance onboard processing and direct control over I/O signals for complete flexibility of timing and synchronization. With 18 analog output channels connected directly to a Kintex-7 325T FPGA, you have ample space to design applications that require precise timing such as hardware-in-the-loop testing, custom protocol communication, sensor simulation, and high-speed control. The PXIe-7868 features a dedicated A/D converter (ADC) per channel for independent timing and triggering. This design offers multirate sampling and individual channel triggering, which are outside the capabilities of typical data acquisition hardware. The PXIe-7867 also includes peer-to-peer streaming for direct data transfer to other PXI Express modules.





























