Filter Results By:
Products
Applications
Manufacturers
-
product
Programmable 70W Electronic Load
MightyWatt R3
The All-New MightyWatt revision 3 turns your Arduino Uno R3 or Arduino Zero (M0/M0 Pro) into an electronic load capable of dissipating 70 Watts in a very small form factor. Ideal for testing power supplies, batteries, solar cells, fuel cells or power amplifiers. MightyWatt R3 has a research-grade electronics and is aimed not only at hobbyists but also at professionals.
-
product
Basic Quad K-Type Analog Thermocouple Amplifier
SEN-30103-K1
Analog thermocouple amplifier board based on the AD849x from Analog Devices (successor of the AD597). This quad-channel thermocouple board converts the very low voltage signal from a thermocouple to a highly-linear, 0.005V/C output with either 0V or 1.245V offset (both configurations stocked) while removing unwanted noise from the signal. Many supply and output configurations are available with this board, though the PCB was designed with Arduino in mind. Specifically, the output header will plug directly into a standard Arduino Uno or Mega, with a pin-for-pin match for power supply, ground and analog outputs. With a 5V Arduino, temperatures from 0C to 1,000C are possible with the 0V offset board and -249C to 750C with the 1.245V offset board. If using a 3.3V microcontroller (Due, etc), the board must be supplied with no more than 3.3V to avoid damaging the microcontroller. Temperature measurement range is dependent on the supply voltage. It is possible to supply the board with higher voltages to allow temperature measurement over the entire operating range of the K-Type and J-Type thermocouples, allowing use with more capable data acquisition equipment.
-
product
SparkFun ESP8266 Thing
Dev Board (with Headers)
This is the SparkFun ESP8266 Thing Dev Board --- a development board that has been solely designed around the ESP8266, with an integrated FTDI USB-to-Serial chip. The ESP8266 is a cost-effective and very capable WiFi-enabled microcontroller. Like any microcontroller, it can be programmed to blink LEDs, trigger relays, monitor sensors or automate coffee makers. With an integrated WiFi controller, the ESP8266 is a one-stop shop for almost any internet-connected project. To top it all off, the ESP8266 is incredibly easy to use; firmware can be developed in Arduino and uploaded over a simple serial interface. The ESP8266 Thing Development Board breaks out all of the module’s pins with pre-soldered headers, and the USB-to-serial converter means you don’t need any peripheral components to program the chip. Just plug in a USB cable, download the Arduino board definitions, and start IoT-ing.
-
product
Board
Arduino MKR1000 WIFI
Monacor International GmbH & Co. KG
Arduino MKR1000 is a powerful board that combines the functionality of the Zero and the Wi-Fi Shield. It is the ideal solution for makers wanting to design IoT projects with minimal previous experience in networking.
-
product
SparkFun Mini Breakout
SAMD21
If you’re ready to step your Arduino game up from older 8-bit/16MHz microcontrollers, the SparkFun SAMD21 Mini Breakout is a great landing spot. The SAMD21 Mini Breakout is a Pro Mini-sized breakout for the Atmel ATSAMD21G18, a 32-bit ARM Cortex-M0+ processor with 256KB flash, 32KB SRAM, and an operating speed of up to 48MHz. This mini breakout provides you with an Arduino hardware option that solves the problems of low storage limits and dynamic memory stack overflows that have plagued the previous iterations of the Arduino family. Yes, the SparkFun SAMD21 Mini Breakout is even fully supported in the Arduino IDE and libraries for the Arduino Zero!
-
product
Board
Arduino MKR Vidor 4000
The Arduino MKR Vidor 4000 brings Arduino's ease of use to the work with the most powerful reprogrammable chips that exist: FPGAs. With Vidor you can create a board where all pins are PWM signals controlling the speed of motors. You can capture sound in real time and make a sound effect pedal for your guitar. It is possible to create a real-time computer reading sensor information and sending it to a state-of-the-art monitor or capture video and overlay sensor information on the image that will then later be sent over to a screen. You can connect to the Arduino IoT Cloud and control a complex laboratory machine running a large amount of motors. You could even prototype your own processors inside the FPGA and have it to work in parallel to the other microcontroller on the board. Vidor is a device that invites for experimentation, precision, and high speed computation.
-
product
Triple-Axis Accelerometer (+-2g/4g/8g/16g) w/ I2C/SPI
ADXL345
Filling out our accelerometer offerings, we now have the really lovely digital ADXL345 from Analog Devices, a triple-axis accelerometer with digital I2C and SPI interface breakout. We added an on-board 3.3V regulator and logic-level shifting circuitry, making it a perfect choice for interfacing with any 3V or 5V microcontroller such as the Arduino.
-
product
MAX31855 T-Type Thermocouple Arduino Shield
SEN-30004-T47
Four channel MAX31855 digital thermocouple Arduino Shield. Two versions of this shield are avaliable for each thermocouple type: either 'Ch 0-3' (CS pins use Uno/Mega IO pins 7-10) or 'Ch 4-7' (CS pins use Uno/Mega IO pins 3-6), with the only difference being which set of zero-ohm resistors are populated on the board. This allows use of other SPI devices that may be 'hard coded' to specific digital pins on the Arduino, or simply stacking one of each type together to get a total of eight thermocouple channels on one Arduino.
-
product
Lightning "Emulator" Shield
SEN-39002
Arduino shield, ideal for AS3935 lightning sensor development. The lightning "emulator" generates a RF signal that mimics lightning strikes. This board is in an Arduino Uno form factor, and only uses GPIO and I2C, so can be stacked on many form factors (developed on an Uno and Mega).
-
product
Lightning Sensor Breakout
SEN-39001
Breakout board for the AS3935 digital lightning sensor based on the AMS reference design. Includes specially tuned antenna, SPI or I2C interfacing, and a wide 2.4V to 5.5V standard operating range. This innovative sensor is designed to interface with most current development systems and boards, including all current Arduino modules. The breakout board features an inductor (antenna) specially designed for this application, and the board ships fully calibrated. This ensures that you don't have to write a massive back-end to support low-level IC calibration, just focus on your final application!
-
product
Board
Arduino Due
The Arduino Due is the first Arduino board based on a 32-bit ARM core microcontroller. With 54 digital input/output pins, 12 analog inputs, it is the perfect board for powerful larger scale Arduino projects.
-
product
Arduino CAN Shield
IFB-10003-AWP
CAN (Controller Area Network) communication has become ubiquitous in industry. It is used in automotive applications (part of OBD and many other datalinks), on-highway trucks (J1939), industrial machinery and instrumentation, and equipment applications (factory automation). This shield is designed to provide a CAN 2.0 front-end interface for 5V Arduino modules (Uno, Mega, etc). The module uses SPI to communicate to the Arduino, and requires an aditional chip select pin. An optional interrupt line to the MCP2515 and two LEDS are also provided. The chip select and interupt lines are selected via zero ohm resistors and have several configuration options for flexibility stacking additional shields. A set of stackable headers is included with this board, not installed. An optional on-board voltage regulator may be used to supply 7.5V to the Arduino's 'Vin' pin (which is regulated to 5V by the Arduino's on-board LDO). The CAN shield regulator supports a wide input range of 9V to 32V. This makes it possible to cleanly build a stand-alone CAN node (remote sensor) without the need for a separate Arduino power supply!
-
product
Shield
Arduino Motor Shield Rev3
The Arduino Motor Shield is based on the L298 (datasheet), which is a dual full-bridge driver designed to drive inductive loads such as relays, solenoids, DC and stepping motors. It lets you drive two DC motors with your Arduino board, controlling the speed and direction of each one independently. You can also measure the motor current absorption of each motor, among other features. The shield is TinkerKit compatible, which means you can quickly create projects by plugging TinkerKit modules to the board.
-
product
Breakout Boards
Breakout your Raspberry Pis and Arduinos with this broad selection of versatile breakout boards! Engineered to help you realize your robotics, GPS and altitude sensing projects as well as servo and touch screen interfacing, you''ll find many uses for these high-quality boards, most of which are manufactured in house at Adafruit!
-
product
Board
Arduino MKR1000 WIFI
Arduino MKR1000 is a powerful board that combines the functionality of the Zero and the Wi-Fi Shield. It is the ideal solution for makers wanting to design IoT projects with minimal previous experience in networking.
-
product
Board
MKR GSM 1400
Arduino MKR GSM 1400 allows you to build your next smart project. Ever wanted an automated house? Or a smart garden? Well, now it’s easy with the Arduino IoT Cloud compatible boards. It means: you can connect devices, visualize data, control and share your projects from anywhere in the world. Whether you’re a beginner or a pro, we have a wide range of plans to make sure you get the features you need.
-
product
Shield
Arduino MKR CAN Shield
Need to connect a device to a CAN (Controller Area Network) for communication within an automobile and with other CAN devices? The Arduino MKR CAN shield will provide automotive CAN connectivity.
-
product
ESP8266 WiFi With Headers
Feather HUZZAH
Flagship development board from Adafruit, and like its namesake it is thin, light, and lets you fly! We designed Feather to be a new standard for portable microcontroller cores. This is the Assembled Adafruit Feather HUZZAH ESP8266 with headers. At the Feather HUZZAH's heart is an ESP8266 WiFi microcontroller clocked at 80 MHz and at 3.3V logic. This microcontroller contains a Tensilica chip core as well as a full WiFi stack. You can program the microcontroller using the Arduino IDE for an easy-to-run Internet of Things core.
-
product
SparkFun Current Sensor Breakout
ACS723 (Low Current)
The low current version of the SparkFun Current Sensor Breakout is a high accuracy board that utilizes the ACS723 for low to moderate AC and DC current sensing applications. The ACS723 sensor uses a Hall effect sensor to output a voltage relative to the current flowing through the IP+ and IP- pins on the board. The advantage of using a Hall effect sensor, specifically, is that the circuit being sensed and the circuit reading the sensor are electrically isolated meaning that, although your Arduino is running on 5V, the sensed circuit can be operating at higher DC or AC voltages!
-
product
NITOS Wireless Sensor Platform
The NITOS prototype wireless sensor mote, is comprised of open-source and configurable modules. NITOS mote features the ATmega32u4 microcontroller running at 8MHz and operating at 3.3V. The aforementioned microcontroller is fully compatible with the Arduino platform that enables ease of software development and provides compatibility with several commercial sensing modules. Moreover, the platform is equipped with an Xbee radio interface that enables communication with the respective gateway. The Xbee module is a tiny device ideal for setting up mesh networks and has a defined rate of 250 kbps. This module uses the IEEE 802.15.4 stack which is the basis for theZigbee protocol. Apart from the Xbee module, NITOS mote can also feature a WiFi wireless interface in order to communicate with WiFi gateways. The developed mote currently features specific sensing modules, an air temperature and humidity sensor, a light intensity sensor and a human presencesensor. Various types of sensing modules and actuators can be further integrated exploiting existing Arduino software that implements several existing communications protocols. The firmware can be easily uploaded through the on-board USB connection. Figure 1 illustrates the developed NITOS mote and the respective gateway node.
-
product
Arduino CAN Shield
IFB-10003-IWP
CAN (Controller Area Network) communication has become ubiquitous in industry. It is used in automotive applications (part of OBD and many other datalinks), on-highway trucks (J1939), industrial machinery and instrumentation, and equipment applications (factory automation). This shield is designed to provide a CAN 2.0 front-end interface for 5V Arduino modules (Uno, Mega, etc). The module uses SPI to communicate to the Arduino, and requires an aditional chip select pin. An optional interrupt line to the MCP2515 and two LEDS are also provided. The chip select and interupt lines are selected via zero ohm resistors and have several configuration options for flexibility stacking additional shields. A set of stackable headers is included with this board, not installed. An optional on-board voltage regulator may be used to supply 7.5V to the Arduino's 'Vin' pin (which is regulated to 5V by the Arduino's on-board LDO). The CAN shield regulator supports a wide input range of 9V to 32V. This makes it possible to cleanly build a stand-alone CAN node (remote sensor) without the need for a separate Arduino power supply!
-
product
Shield
Arduino 4 Relays Shield
The Arduino 4 Relays Shield is a solution for driving high power loads that cannot be controlled by Arduino's digital IOs, due to the current and voltage limits of the controller. The Shield features four relays, each relay provides 2 pole changeover contacts (NO and NC); in order to increase the current limit of each output the 2 changeover contacts have been put in parallel. Four LEDs indicate the on/off state of each relay.
-
product
Basic Quad J-Type Analog Thermocouple Amplifier
SEN-30103-J1
Analog thermocouple amplifier board based on the AD849x from Analog Devices (successor of the AD597). This quad-channel thermocouple board converts the very low voltage signal from a thermocouple to a highly-linear, 0.005V/C output with either 0V or 1.245V offset (both configurations stocked) while removing unwanted noise from the signal. Many supply and output configurations are available with this board, though the PCB was designed with Arduino in mind. Specifically, the output header will plug directly into a standard Arduino Uno or Mega, with a pin-for-pin match for power supply, ground and analog outputs. With a 5V Arduino, temperatures from 0C to 1,000C are possible with the 0V offset board and -249C to 750C with the 1.245V offset board. If using a 3.3V microcontroller (Due, etc), the board must be supplied with no more than 3.3V to avoid damaging the microcontroller. Temperature measurement range is dependent on the supply voltage. It is possible to supply the board with higher voltages to allow temperature measurement over the entire operating range of the K-Type and J-Type thermocouples, allowing use with more capable data acquisition equipment.
-
product
SparkFun Micro OLED Breakout
The SparkFun Micro OLED Breakout Board breaks out a small monochrome, blue-on-black OLED. It’s "micro", but it still packs a punch – the OLED display is crisp, and you can fit a deceivingly large amount of graphics on there. This breakout is perfect for adding graphics to your next Arduino project, displaying diagnostic information without resorting to serial output, and teaching a little game theory while creating a fun, Arduino-based video game. Most important of all, though, is the Micro OLED is easy to control over either an SPI or I2C interface.
-
product
NITlab Chassis Manager Card Arduino
The latest NITOS Chassis Manager Card is designed to add remote management capabilities of the NITOS nodes. CM Card consists of an Arduino Ethernet Microcontroller and a NITOS CM Card Shield. The CM Card's Firmware is a tiny web-server, that receives and processes http requests.
-
product
Arduino CAN Shield
IFB-10003-ANP
CAN (Controller Area Network) communication has become ubiquitous in industry. It is used in automotive applications (part of OBD and many other datalinks), on-highway trucks (J1939), industrial machinery and instrumentation, and equipment applications (factory automation). This shield is designed to provide a CAN 2.0 front-end interface for 5V Arduino modules (Uno, Mega, etc). The module uses SPI to communicate to the Arduino, and requires an aditional chip select pin. An optional interrupt line to the MCP2515 and two LEDS are also provided. The chip select and interupt lines are selected via zero ohm resistors and have several configuration options for flexibility stacking additional shields. A set of stackable headers is included with this board, not installed. An optional on-board voltage regulator may be used to supply 7.5V to the Arduino's 'Vin' pin (which is regulated to 5V by the Arduino's on-board LDO). The CAN shield regulator supports a wide input range of 9V to 32V. This makes it possible to cleanly build a stand-alone CAN node (remote sensor) without the need for a separate Arduino power supply!
-
product
Bi-Directional Level Translator
IFB-10001
Easily connect Arduino or other 5V microcontrollers to ~3.3V sensors. Based on the TI TXB0108 auto-sensing, bi-directional level translator, this module provides access to all 8 channels of the TXB0108 and has a built-in 300mA LDO with 200mV max dropout voltage at full load. Regulated 3.3V output allows this single board to both interface withandpower 3.3V sensors. An important feature of this module is the ability to operate SPI and other digital lines (not including I2C) at high-speed, whereas the 'NXP level shifter' maxes out at 400kHz and resistor dividers fail much earlier. The TXB0108, integrated with the LP3981 LDO, provide a fast, reliable solution to mismatched interface voltages that exceeds the performance of other solutions.
-
product
Air Quality USB Dongle
UTHINGL::VOC
uThing::VOC™ is a USB dongle useful to quickly integrate or evaluate the Bosch BME680 air quality sensor. If you need to sense air-quality data and decide to use the Bosch BME680, you will find that integrating the Bosch proprietary algorithms is not a trivial task, and that the code size limits its use in constrained platforms like many Arduino boards.
-
product
MAX31856 Thermocouple Sensor Arduino Shield
SEN-30007-K
Quad channel thermocouple Arduino shield based on the MAX31856 universal digital thermocouple interface IC. This is an exciting update of the MAX31855, with improvements in resolution (19 vs 14 bits), on-board temperature reference (6 vs 4 bits), and compensation (fully compensated vs nonlinear correction required). The MAX31856 is interfaced via 4-wire SPI with options for interrupt triggering. An LDO and a high-speed level shifter are included on ALL device pins to allow interfacing with to any Arduino - both 3.3V and 5.0V variants - without sacrificing device performance in any operating condition.
-
product
Basic Quad J-Type Analog Thermocouple Amplifier
SEN-30103-J0
Analog thermocouple amplifier board based on the AD849x from Analog Devices (successor of the AD597). This quad-channel thermocouple board converts the very low voltage signal from a thermocouple to a highly-linear, 0.005V/C output with either 0V or 1.245V offset (both configurations stocked) while removing unwanted noise from the signal. Many supply and output configurations are available with this board, though the PCB was designed with Arduino in mind. Specifically, the output header will plug directly into a standard Arduino Uno or Mega, with a pin-for-pin match for power supply, ground and analog outputs. With a 5V Arduino, temperatures from 0C to 1,000C are possible with the 0V offset board and -249C to 750C with the 1.245V offset board. If using a 3.3V microcontroller (Due, etc), the board must be supplied with no more than 3.3V to avoid damaging the microcontroller. Temperature measurement range is dependent on the supply voltage. It is possible to supply the board with higher voltages to allow temperature measurement over the entire operating range of the K-Type and J-Type thermocouples, allowing use with more capable data acquisition equipment.